skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeFelippis, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observed breakBRD (“break bulges in red disks”) galaxies are a nearby sample of face-on disk galaxies with particularly centrally concentrated star formation: they have red disks but recent star formation in their centers as measured by the Dn4000 spectral index. In Kopenhafer et al., a comparable population of breakBRD analogs was identified in the TNG simulation, in which the central concentration of star formation was found to reflect a central concentration of dense, star-forming gas caused by a lack of dense gas in the galaxy outskirts. In this paper, we examine the circumgalactic medium of the central breakBRD analogs to determine if the extended halo gas also shows differences from that around comparison galaxies with comparable stellar mass. We examine the circumgalactic medium gas mass, specific angular momentum, and metallicity in these galaxy populations. We find less gas in the circumgalactic medium of breakBRD galaxies, and that the breakBRD circumgalactic medium is slightly more concentrated than that of comparableM*galaxies. In addition, we find that the angular momentum in the circumgalactic medium of breakBRD galaxies tends to be low for their stellar mass, and shows more misalignment to the angular momentum vector of the stellar disk. Finally, we find that the circumgalactic medium metallicity of breakBRD galaxies tends to be high for their stellar mass. Together with their low star formation rate, we argue that these circumgalactic medium properties indicate a small amount of disk feeding concentrated in the central regions and a lack of low-metallicity gas accretion from the intergalactic medium. 
    more » « less
  2. Abstract The circumgalactic medium (CGM) contains information on gas flows around galaxies, such as accretion and supernova-driven winds, which are difficult to constrain from observations alone. Here, we use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to study the properties and kinematics of the CGM around star-forming galaxies in 10 11.5 –10 12 M ⊙ halos at z ≃ 1 using mock Mg ii absorption lines, which we generate by postprocessing halos to account for photoionization in the presence of a UV background. We find that the Mg ii gas is a very good tracer of the cold CGM, which is accreting inward at inflow velocities of up to 50 km s −1 . For sight lines aligned with the galaxy’s major axis, we find that Mg ii absorption lines are kinematically shifted due to the cold CGM’s significant corotation at speeds up to 50% of the virial velocity for impact parameters up to 60 kpc. We compare mock Mg ii spectra to observations from the MusE GAs FLow and Wind (MEGAFLOW) survey of strong Mg ii absorbers (EW 2796 Å 0 > 0.5 Å). After matching the equivalent-width (EW) selection, we find that the mock Mg ii spectra reflect the diversity of observed kinematics and EWs from MEGAFLOW, even though the sight lines probe a very small fraction of the CGM. Mg ii absorption in higher-mass halos is stronger and broader than in lower-mass halos but has qualitatively similar kinematics. The median-specific angular momentum of the Mg ii CGM gas in TNG50 is very similar to that of the entire CGM and only differs from non-CGM components of the halo by normalization factors of ≲1 dex. 
    more » « less